Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Biol Interact ; 387: 110810, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-38013145

ABSTRACT

INTRODUCTION: Iodide is an essential micronutrient for the synthesis of thyroid hormones and its imbalance is involved in the origin of different thyroid pathological processes. Selenium (Se) is another essential trace element that contributes to thyroid preservation through the control of the redox homeostasis. Different studies have demonstrated that sodium-iodide-symporter (NIS) is downregulated in the presence of iodide excess and Se supplementation reverses this effect. We also demonstrated that NOX4-derived ROS are involved in NIS repression induced by iodide excess. The aim of this study was to investigate how Se bioavailability is decisive in the sensitivity to iodide excess on a differentiated rat thyroid cell line (FRTL-5). RESULTS: We demonstrated that siRNA-mediated silencing of Nox4 suppressed AKT phosphorylation induced by iodide excess. Iodide increases TGF-ß1 mRNA expression, AKT phosphorylation, ROS levels and decreases GPX1 and TXRND1 mRNAs expression while Se reversed these effects. Furthermore, iodide induced Nrf2 transcriptional activity only in Se-supplemented cultures, suggesting that Se positively influences Nrf2 activation and selenoenzyme response in FRTL-5. Se, also inhibited NF-κB phosphorylation induced by iodide excess. In addition, we found that iodide excess decreased total phosphatase activity and PTP1B and PTEN mRNA expression. Se supply restored only PTEN mRNA expression. Finally, we studied the 2-α-iodohexadecanal (2-IHD) effects since it has been proposed as intermediary of iodide action on thyroid autoregulation. 2-IHD stimulated PI3K/AKT activity and reduced NIS expression by a ROS-independent mechanism. Also, we found that 2-IHD increased TGF-ß1 mRNA and TGF-ß inhibitor (SB431542) reverses the 2-IHD inhibitory effect on NIS mRNA expression, suggesting that TGF-ß1 signaling pathway could be involved. Although Se reduced 2-IHD-induced TGFB1 levels, it could not reverse its inhibitory effect on NIS expression. CONCLUSION: Our study suggests that Se bioavailability may improve the expression of antioxidant genes through the activation of Nrf2, interfere in PI3K/AKT signaling and NIS expression by redox modulation.


Subject(s)
Selenium , Thyroid Gland , Rats , Animals , Thyroid Gland/metabolism , Iodides/metabolism , Selenium/pharmacology , Selenium/metabolism , Transforming Growth Factor beta1/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Reactive Oxygen Species/metabolism , Biological Availability , Phosphatidylinositol 3-Kinases/metabolism , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism
2.
Article in English | MEDLINE | ID: mdl-23375358

ABSTRACT

BACKGROUND: IL-δ (5-hydroxy-6 iodo-8,11,14-eicosatrienoic delta lactone) an iodinated arachidonic acid (AA) derivative, is one of the iodolipids biosynthesized by the thyroid. Although IL-δ regulates several thyroid parameters such as cell proliferation and goiter growth it was found that this iodolipid inhibits the growth of other non thyroid cell lines. OBJECTIVES: To study the effect of IL-δ on cell proliferation and apoptosis in the colon cancer cell line HT-29. RESULTS: Treatment with IL-δ reduced cell viability in a concentration-dependent manner: 1µM 20%, 5µM 25%, 10µM 31%, 50µM 47% and caused a significant decrease of PCNA expression (25%). IL-δ had pro-apoptotic effects, evidenced by morphological features of programmed cell death such as pyknosis, karyorrhexis, cell shrinkage and cell blebbing observed by fluorescence microscopy, and an increase in caspase-3 activity and in Bax/Bcl-2 ratio (2.5 after 3h of treatment). Furthermore, IL-δ increased ROS production (30%) and lipid peroxidation levels (19%), suggesting that apoptosis could be a result of increased oxidative stress. A maximum increase in c-fos and c-jun protein expression in response to IL-δ was observed 1h after initiation of the treatment. IL-δ also induced a tumour growth delay of 70% compared to the control group in NIH nude mice implanted with HT-29 cells. CONCLUSION: Our study shows that IL-δ inhibits cell growth and induces apoptosis in the colon cancer cell line, HT-29 and opens the possibility that IL-δ could be a potential useful chemotherapy agent.


Subject(s)
Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Arachidonic Acid/chemistry , Arachidonic Acids/chemistry , Arachidonic Acids/pharmacology , Apoptosis/drug effects , Cell Proliferation/drug effects , HT29 Cells , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...